Tham khảo Trao_đổi_chất

  1. 1 2 Friedrich C (1998). “Physiology and genetics of sulfur-oxidizing bacteria”. Adv Microb Physiol. Advances in Microbial Physiology 39: 235–89. ISBN 978-0-12-027739-1. PMID 9328649. doi:10.1016/S0065-2911(08)60018-1
  2. Pace NR (tháng 1 năm 2001). “The universal nature of biochemistry”. Proc. Natl. Acad. Sci. U.S.A. 98 (3): 805–8. Bibcode:2001PNAS...98..805P. PMC 33372. PMID 11158550. doi:10.1073/pnas.98.3.805
  3. 1 2 Smith E, Morowitz H (2004). “Universality in intermediary metabolism”. Proc Natl Acad Sci USA 101 (36): 13168–73. Bibcode:2004PNAS..10113168S. PMC 516543. PMID 15340153. doi:10.1073/pnas.0404922101
  4. 1 2 Ebenhöh O, Heinrich R (2001). “Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems”. Bull Math Biol 63 (1): 21–55. PMID 11146883. doi:10.1006/bulm.2000.0197
  5. 1 2 Meléndez-Hevia E, Waddell T, Cascante M (1996). “The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution”. J Mol Evol 43 (3): 293–303. Bibcode:1996JMolE..43..293M. PMID 8703096. doi:10.1007/BF02338838
  6. Michie K, Löwe J (2006). “Dynamic filaments of the bacterial cytoskeleton”. Annu Rev Biochem 75: 467–92. PMID 16756499. doi:10.1146/annurev.biochem.75.103004.142452
  7. 1 2 3 4 5 Nelson, David L.; Michael M. Cox (2005). Lehninger Principles of Biochemistry. New York: W. H. Freeman and company. tr. 841. ISBN 0-7167-4339-6
  8. Kelleher J, Bryan 3rd, B, Mallet R, Holleran A, Murphy A, and Fiskum G (1987). “Analysis of tricarboxylic acid-cycle metabolism of hepatoma cells by comparison of 14CO2 ratios”. Biochem J 246 (3): 633–639. PMC 1148327. PMID 3120698. doi:10.1042/bj2460633
  9. Hothersall, J & Ahmed, A (2013). “Metabolic fate of the increased yeast amino acid uptake subsequent to catabolite derepression”. J Amino Acids 2013: e461901. PMC 3575661. PMID 23431419. doi:10.1155/2013/461901
  10. Fahy E, Subramaniam S, Brown H, Glass C, Merrill A, Murphy R, Raetz C, Russell D, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze M, White S, Witztum J, Dennis E (2005). “A comprehensive classification system for lipids”. J Lipid Res 46 (5): 839–61. PMID 15722563. doi:10.1194/jlr.E400004-JLR200
  11. “Nomenclature of Lipids”. IUPAC-IUB Commission on Biochemical Nomenclature (CBN). Truy cập ngày 8 tháng 3 năm 2007. 
  12. Hegardt F (1999). “Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis”. Biochem J 338 (Pt 3): 569–82. PMC 1220089. PMID 10051425. doi:10.1042/0264-6021:3380569
  13. Raman R, Raguram S, Venkataraman G, Paulson J, Sasisekharan R (2005). “Glycomics: an integrated systems approach to structure-function relationships of glycans”. Nat Methods 2 (11): 817–24. PMID 16278650. doi:10.1038/nmeth807
  14. Sierra S, Kupfer B, Kaiser R (2005). “Basics of the virology of HIV-1 and its replication”. J Clin Virol 34 (4): 233–44. PMID 16198625. doi:10.1016/j.jcv.2005.09.004
  15. 1 2 Wimmer M, Rose I (1978). “Mechanisms of enzyme-catalyzed group transfer reactions”. Annu Rev Biochem 47: 1031–78. PMID 354490. doi:10.1146/annurev.bi.47.070178.005123
  16. Mitchell P (1979). “The Ninth Sir Hans Krebs Lecture. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems”. Eur J Biochem 95 (1): 1–20. PMID 378655. doi:10.1111/j.1432-1033.1979.tb12934.x
  17. 1 2 3 4 Dimroth P, von Ballmoos C, Meier T (tháng 3 năm 2006). “Catalytic and mechanical cycles in F-ATP synthases: Fourth in the Cycles Review Series”. EMBO Rep 7 (3): 276–82. PMC 1456893. PMID 16607397. doi:10.1038/sj.embor.7400646
  18. Coulston, Ann; Kerner, John; Hattner, JoAnn; Srivastava, Ashini (2006). “Nutrition Principles and Clinical Nutrition”. Stanford School of Medicine Nutrition Courses. SUMMIT. 
  19. Pollak N, Dölle C, Ziegler M (2007). “The power to reduce: pyridine nucleotides – small molecules with a multitude of functions”. Biochem J 402 (2): 205–18. PMC 1798440. PMID 17295611. doi:10.1042/BJ20061638
  20. 1 2 Heymsfield S, Waki M, Kehayias J, Lichtman S, Dilmanian F, Kamen Y, Wang J, Pierson R (1991). “Chemical and elemental analysis of humans in vivo using improved body composition models”. Am J Physiol 261 (2 Pt 1): E190–8. PMID 1872381
  21. Sychrová H (2004). “Yeast as a model organism to study transport and homeostasis of alkali metal cations” (PDF). Physiol Res. 53 Suppl 1: S91–8. PMID 15119939
  22. Levitan I (1988). “Modulation of ion channels in neurons and other cells”. Annu Rev Neurosci 11: 119–36. PMID 2452594. doi:10.1146/annurev.ne.11.030188.001003
  23. Dulhunty A (2006). “Excitation-contraction coupling from the 1950s into the new millennium”. Clin Exp Pharmacol Physiol 33 (9): 763–72. PMID 16922804. doi:10.1111/j.1440-1681.2006.04441.x
  24. Mahan D, Shields R (1998). “Macro- and micromineral composition of pigs from birth to 145 kilograms of body weight” (PDF). J Anim Sci 76 (2): 506–12. PMID 9498359
  25. Husted S, Mikkelsen B, Jensen J, Nielsen N (2004). “Elemental fingerprint analysis of barley (Hordeum vulgare) using inductively coupled plasma mass spectrometry, isotope-ratio mass spectrometry, and multivariate statistics”. Anal Bioanal Chem 378 (1): 171–82. PMID 14551660. doi:10.1007/s00216-003-2219-0
  26. Finney L, O'Halloran T (2003). “Transition metal speciation in the cell: insights from the chemistry of metal ion receptors”. Science 300 (5621): 931–6. Bibcode:2003Sci...300..931F. PMID 12738850. doi:10.1126/science.1085049
  27. Cousins R, Liuzzi J, Lichten L (2006). “Mammalian zinc transport, trafficking, and signals”. J Biol Chem 281 (34): 24085–9. PMID 16793761. doi:10.1074/jbc.R600011200
  28. Dunn L, Rahmanto Y, Richardson D (2007). “Iron uptake and metabolism in the new millennium”. Trends Cell Biol 17 (2): 93–100. PMID 17194590. doi:10.1016/j.tcb.2006.12.003
  29. Nealson K, Conrad P (1999). “Life: past, present and future”. Philos Trans R Soc Lond B Biol Sci 354 (1392): 1923–39. PMC 1692713. PMID 10670014. doi:10.1098/rstb.1999.0532
  30. 1 2 Nelson N, Ben-Shem A (2004). “The complex architecture of oxygenic photosynthesis”. Nat Rev Mol Cell Biol 5 (12): 971–82. PMID 15573135. doi:10.1038/nrm1525
  31. Häse C, Finkelstein R (tháng 12 năm 1993). “Bacterial extracellular zinc-containing metalloproteases”. Microbiol Rev 57 (4): 823–37. PMC 372940. PMID 8302217
  32. Gupta R, Gupta N, Rathi P (2004). “Bacterial lipases: an overview of production, purification and biochemical properties”. Appl Microbiol Biotechnol 64 (6): 763–81. PMID 14966663. doi:10.1007/s00253-004-1568-8
  33. Hoyle T (1997). “The digestive system: linking theory and practice”. Br J Nurs 6 (22): 1285–91. PMID 9470654
  34. Souba W, Pacitti A (1992). “How amino acids get into cells: mechanisms, models, menus, and mediators”. JPEN J Parenter Enteral Nutr 16 (6): 569–78. PMID 1494216. doi:10.1177/0148607192016006569
  35. Barrett M, Walmsley A, Gould G (1999). “Structure and function of facilitative sugar transporters”. Curr Opin Cell Biol 11 (4): 496–502. PMID 10449337. doi:10.1016/S0955-0674(99)80072-6
  36. Bell G, Burant C, Takeda J, Gould G (1993). “Structure and function of mammalian facilitative sugar transporters”. J Biol Chem 268 (26): 19161–4. PMID 8366068
  37. 1 2 Bouché C, Serdy S, Kahn C, Goldfine A (2004). “The cellular fate of glucose and its relevance in type 2 diabetes”. Endocr Rev 25 (5): 807–30. PMID 15466941. doi:10.1210/er.2003-0026
  38. Wipperman, Matthew, F.; Thomas, Suzanne, T.; Sampson, Nicole, S. (2014). “Pathogen roid rage: Cholesterol utilization by Mycobacterium tuberculosis”. Crit. Rev. Biochem. Mol. Biol. 49 (4): 269–93. PMC 4255906. PMID 24611808. doi:10.3109/10409238.2014.895700
  39. Sakami W, Harrington H (1963). “Amino acid metabolism”. Annu Rev Biochem 32: 355–98. PMID 14144484. doi:10.1146/annurev.bi.32.070163.002035
  40. Brosnan J (2000). “Glutamate, at the interface between amino acid and carbohydrate metabolism”. J Nutr 130 (4S Suppl): 988S–90S. PMID 10736367
  41. Young V, Ajami A (2001). “Glutamine: the emperor or his clothes?”. J Nutr 131 (9 Suppl): 2449S–59S; discussion 2486S–7S. PMID 11533293
  42. Hosler J, Ferguson-Miller S, Mills D (2006). “Energy Transduction: Proton Transfer Through the Respiratory Complexes”. Annu Rev Biochem 75: 165–87. PMC 2659341. PMID 16756489. doi:10.1146/annurev.biochem.75.062003.101730
  43. Schultz B, Chan S (2001). “Structures and proton-pumping strategies of mitochondrial respiratory enzymes”. Annu Rev Biophys Biomol Struct 30: 23–65. PMID 11340051. doi:10.1146/annurev.biophys.30.1.23
  44. Capaldi R, Aggeler R (2002). “Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor”. Trends Biochem Sci 27 (3): 154–60. PMID 11893513. doi:10.1016/S0968-0004(01)02051-5
  45. Friedrich B, Schwartz E (1993). “Molecular biology of hydrogen utilization in aerobic chemolithotrophs”. Annu Rev Microbiol 47: 351–83. PMID 8257102. doi:10.1146/annurev.mi.47.100193.002031
  46. Weber K, Achenbach L, Coates J (2006). “Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction”. Nat Rev Microbiol 4 (10): 752–64. PMID 16980937. doi:10.1038/nrmicro1490
  47. Jetten M, Strous M, van de Pas-Schoonen K, Schalk J, van Dongen U, van de Graaf A, Logemann S, Muyzer G, van Loosdrecht M, Kuenen J (1998). “The anaerobic oxidation of ammonium”. FEMS Microbiol Rev 22 (5): 421–37. PMID 9990725. doi:10.1111/j.1574-6976.1998.tb00379.x
  48. Simon J (2002). “Enzymology and bioenergetics of respiratory nitrite ammonification”. FEMS Microbiol Rev 26 (3): 285–309. PMID 12165429. doi:10.1111/j.1574-6976.2002.tb00616.x
  49. Conrad R (1996). “Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO)”. Microbiol Rev 60 (4): 609–40. PMC 239458. PMID 8987358
  50. Barea J, Pozo M, Azcón R, Azcón-Aguilar C (2005). “Microbial co-operation in the rhizosphere”. J Exp Bot 56 (417): 1761–78. PMID 15911555. doi:10.1093/jxb/eri197
  51. van der Meer M, Schouten S, Bateson M, Nübel U, Wieland A, Kühl M, de Leeuw J, Sinninghe Damsté J, Ward D (tháng 7 năm 2005). “Diel Variations in Carbon Metabolism by Green Nonsulfur-Like Bacteria in Alkaline Siliceous Hot Spring Microbial Mats from Yellowstone National Park”. Appl Environ Microbiol 71 (7): 3978–86. PMC 1168979. PMID 16000812. doi:10.1128/AEM.71.7.3978-3986.2005
  52. Tichi M, Tabita F (2001). “Interactive Control of Rhodobacter capsulatus Redox-Balancing Systems during Phototrophic Metabolism”. J Bacteriol 183 (21): 6344–54. PMC 100130. PMID 11591679. doi:10.1128/JB.183.21.6344-6354.2001
  53. Allen J, Williams J (1998). “Photosynthetic reaction centers”. FEBS Lett 438 (1–2): 5–9. PMID 9821949. doi:10.1016/S0014-5793(98)01245-9
  54. Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (2004). “Cyclic electron flow around photosystem I is essential for photosynthesis”. Nature 429 (6991): 579–82. Bibcode:2004Natur.429..579M. PMID 15175756. doi:10.1038/nature02598
  55. Miziorko H, Lorimer G (1983). “Ribulose-1,5-bisphosphate carboxylase-oxygenase”. Annu Rev Biochem 52: 507–35. PMID 6351728. doi:10.1146/annurev.bi.52.070183.002451
  56. Dodd A, Borland A, Haslam R, Griffiths H, Maxwell K (2002). “Crassulacean acid metabolism: plastic, fantastic”. J Exp Bot 53 (369): 569–80. PMID 11886877. doi:10.1093/jexbot/53.369.569
  57. Hügler M, Wirsen C, Fuchs G, Taylor C, Sievert S (tháng 5 năm 2005). “Evidence for Autotrophic CO2 Fixation via the Reductive Tricarboxylic Acid Cycle by Members of the ɛ Subdivision of Proteobacteria”. J Bacteriol 187 (9): 3020–7. PMC 1082812. PMID 15838028. doi:10.1128/JB.187.9.3020-3027.2005
  58. Strauss G, Fuchs G (1993). “Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle”. Eur J Biochem 215 (3): 633–43. PMID 8354269. doi:10.1111/j.1432-1033.1993.tb18074.x
  59. Wood H (1991). “Life with CO or CO2 and H2 as a source of carbon and energy.”. FASEB J 5 (2): 156–63. PMID 1900793
  60. Shively J, van Keulen G, Meijer W (1998). “Something from almost nothing: carbon dioxide fixation in chemoautotrophs”. Annu Rev Microbiol 52: 191–230. PMID 9891798. doi:10.1146/annurev.micro.52.1.191
  61. Boiteux A, Hess B (1981). “Design of glycolysis”. Philos Trans R Soc Lond B Biol Sci 293 (1063): 5–22. Bibcode:1981RSPTB.293....5B. PMID 6115423. doi:10.1098/rstb.1981.0056
  62. Pilkis S, el-Maghrabi M, Claus T (1990). “Fructose-2,6-bisphosphate in control of hepatic gluconeogenesis. From metabolites to molecular genetics”. Diabetes Care 13 (6): 582–99. PMID 2162755. doi:10.2337/diacare.13.6.582
  63. 1 2 Ensign S (2006). “Revisiting the glyoxylate cycle: alternate pathways for microbial acetate assimilation”. Mol Microbiol 61 (2): 274–6. PMID 16856935. doi:10.1111/j.1365-2958.2006.05247.x
  64. Finn P, Dice J (2006). “Proteolytic and lipolytic responses to starvation”. Nutrition 22 (7–8): 830–44. PMID 16815497. doi:10.1016/j.nut.2006.04.008
  65. 1 2 Kornberg H, Krebs H (1957). “Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle”. Nature 179 (4568): 988–91. Bibcode:1957Natur.179..988K. PMID 13430766. doi:10.1038/179988a0
  66. Rademacher T, Parekh R, Dwek R (1988). “Glycobiology”. Annu Rev Biochem 57: 785–838. PMID 3052290. doi:10.1146/annurev.bi.57.070188.004033
  67. Opdenakker G, Rudd P, Ponting C, Dwek R (1993). “Concepts and principles of glycobiology.”. FASEB J 7 (14): 1330–7. PMID 8224606
  68. McConville M, Menon A (2000). “Recent developments in the cell biology and biochemistry of glycosylphosphatidylinositol lipids (review)”. Mol Membr Biol 17 (1): 1–16. PMID 10824734. doi:10.1080/096876800294443
  69. Chirala S, Wakil S (2004). “Structure and function of animal fatty acid synthase”. Lipids 39 (11): 1045–53. PMID 15726818. doi:10.1007/s11745-004-1329-9
  70. White S, Zheng J, Zhang Y (2005). “The structural biology of type II fatty acid biosynthesis”. Annu Rev Biochem 74: 791–831. PMID 15952903. doi:10.1146/annurev.biochem.74.082803.133524
  71. Ohlrogge J, Jaworski J (1997). “Regulation of fatty acid synthesis”. Annu Rev Plant Physiol Plant Mol Biol 48: 109–136. PMID 15012259. doi:10.1146/annurev.arplant.48.1.109
  72. Dubey V, Bhalla R, Luthra R (2003). “An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants” (PDF). J Biosci 28 (5): 637–46. PMID 14517367. doi:10.1007/BF02703339. Bản gốc (PDF) lưu trữ ngày 15 tháng 4 năm 2007. 
  73. 1 2 Kuzuyama T, Seto H (2003). “Diversity of the biosynthesis of the isoprene units”. Nat Prod Rep 20 (2): 171–83. PMID 12735695. doi:10.1039/b109860h
  74. Grochowski L, Xu H, White R (tháng 5 năm 2006). “Methanocaldococcus jannaschii Uses a Modified Mevalonate Pathway for Biosynthesis of Isopentenyl Diphosphate”. J Bacteriol 188 (9): 3192–8. PMC 1447442. PMID 16621811. doi:10.1128/JB.188.9.3192-3198.2006
  75. Lichtenthaler H (1999). “The 1-Ddeoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants”. Annu Rev Plant Physiol Plant Mol Biol 50: 47–65. PMID 15012203. doi:10.1146/annurev.arplant.50.1.47
  76. 1 2 Schroepfer G (1981). “Sterol biosynthesis”. Annu Rev Biochem 50: 585–621. PMID 7023367. doi:10.1146/annurev.bi.50.070181.003101
  77. Lees N, Skaggs B, Kirsch D, Bard M (1995). “Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae—a review”. Lipids 30 (3): 221–6. PMID 7791529. doi:10.1007/BF02537824
  78. Himmelreich R, Hilbert H, Plagens H, Pirkl E, Li BC, Herrmann R (tháng 11 năm 1996). “Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae”. Nucleic Acids Res. 24 (22): 4420–49. PMC 146264. PMID 8948633. doi:10.1093/nar/24.22.4420
  79. Guyton, Arthur C.; John E. Hall (2006). Textbook of Medical Physiology. Philadelphia: Elsevier. tr. 855–6. ISBN 0-7216-0240-1
  80. Ibba M, Söll D (2001). “The renaissance of aminoacyl-tRNA synthesis”. EMBO Rep 2 (5): 382–7. PMC 1083889. PMID 11375928. doi:10.1093/embo-reports/kve095. Bản gốc lưu trữ ngày 1 tháng 5 năm 2011. 
  81. Lengyel P, Söll D (1969). “Mechanism of protein biosynthesis”. Bacteriol Rev 33 (2): 264–301. PMC 378322. PMID 4896351
  82. 1 2 Rudolph F (1994). “The biochemistry and physiology of nucleotides”. J Nutr 124 (1 Suppl): 124S–127S. PMID 8283301.  Zrenner R, Stitt M, Sonnewald U, Boldt R (2006). “Pyrimidine and purine biosynthesis and degradation in plants”. Annu Rev Plant Biol 57: 805–36. PMID 16669783. doi:10.1146/annurev.arplant.57.032905.105421
  83. Stasolla C, Katahira R, Thorpe T, Ashihara H (2003). “Purine and pyrimidine nucleotide metabolism in higher plants”. J Plant Physiol 160 (11): 1271–95. PMID 14658380. doi:10.1078/0176-1617-01169
  84. Davies O, Mendes P, Smallbone K, Malys N (2012). “Characterisation of multiple substrate-specific (d)ITP/(d)XTPase and modelling of deaminated purine nucleotide metabolism”. BMB Reports 45 (4): 259–64. PMID 22531138. doi:10.5483/BMBRep.2012.45.4.259
  85. Smith J (1995). “Enzymes of nucleotide synthesis”. Curr Opin Struct Biol 5 (6): 752–7. PMID 8749362. doi:10.1016/0959-440X(95)80007-7
  86. Testa B, Krämer S (2006). “The biochemistry of drug metabolism—an introduction: part 1. Principles and overview”. Chem Biodivers 3 (10): 1053–101. PMID 17193224. doi:10.1002/cbdv.200690111
  87. Danielson P (2002). “The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans”. Curr Drug Metab 3 (6): 561–97. PMID 12369887. doi:10.2174/1389200023337054
  88. King C, Rios G, Green M, Tephly T (2000). “UDP-glucuronosyltransferases”. Curr Drug Metab 1 (2): 143–61. PMID 11465080. doi:10.2174/1389200003339171
  89. Sheehan D, Meade G, Foley V, Dowd C (tháng 11 năm 2001). “Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily”. Biochem J 360 (Pt 1): 1–16. PMC 1222196. PMID 11695986. doi:10.1042/0264-6021:3600001
  90. Galvão T, Mohn W, de Lorenzo V (2005). “Exploring the microbial biodegradation and biotransformation gene pool”. Trends Biotechnol 23 (10): 497–506. PMID 16125262. doi:10.1016/j.tibtech.2005.08.002
  91. Janssen D, Dinkla I, Poelarends G, Terpstra P (2005). “Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities”. Environ Microbiol 7 (12): 1868–82. PMID 16309386. doi:10.1111/j.1462-2920.2005.00966.x
  92. Davies K (1995). “Oxidative stress: the paradox of aerobic life”. Biochem Soc Symp 61: 1–31. PMID 8660387. doi:10.1042/bss0610001
  93. Tu B, Weissman J (2004). “Oxidative protein folding in eukaryotes: mechanisms and consequences”. J Cell Biol 164 (3): 341–6. PMC 2172237. PMID 14757749. doi:10.1083/jcb.200311055
  94. Sies H (1997). “Oxidative stress: oxidants and antioxidants” (PDF). Exp Physiol 82 (2): 291–5. PMID 9129943. doi:10.1113/expphysiol.1997.sp004024
  95. Vertuani S, Angusti A, Manfredini S (2004). “The antioxidants and pro-antioxidants network: an overview”. Curr Pharm Des 10 (14): 1677–94. PMID 15134565. doi:10.2174/1381612043384655
  96. von Stockar U, Liu J (1999). “Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth”. Biochim Biophys Acta 1412 (3): 191–211. PMID 10482783. doi:10.1016/S0005-2728(99)00065-1
  97. Demirel Y, Sandler S (2002). “Thermodynamics and bioenergetics”. Biophys Chem 97 (2–3): 87–111. PMID 12050002. doi:10.1016/S0301-4622(02)00069-8
  98. Albert R (2005). “Scale-free networks in cell biology”. J Cell Sci 118 (Pt 21): 4947–57. PMID 16254242. arXiv:q-bio/0510054. doi:10.1242/jcs.02714
  99. Brand M (1997). “Regulation analysis of energy metabolism” (PDF). J Exp Biol 200 (Pt 2): 193–202. PMID 9050227
  100. Soyer O, Salathé M, Bonhoeffer S (2006). “Signal transduction networks: topology, response and biochemical processes”. J Theor Biol 238 (2): 416–25. PMID 16045939. doi:10.1016/j.jtbi.2005.05.030
  101. 1 2 Salter M, Knowles R, Pogson C (1994). “Metabolic control”. Essays Biochem 28: 1–12. PMID 7925313
  102. Westerhoff H, Groen A, Wanders R (1984). “Modern theories of metabolic control and their applications (review)”. Biosci Rep 4 (1): 1–22. PMID 6365197. doi:10.1007/BF01120819
  103. Fell D, Thomas S (1995). “Physiological control of metabolic flux: the requirement for multisite modulation”. Biochem J 311 (Pt 1): 35–9. PMC 1136115. PMID 7575476
  104. Hendrickson W (2005). “Transduction of biochemical signals across cell membranes”. Q Rev Biophys 38 (4): 321–30. PMID 16600054. doi:10.1017/S0033583506004136
  105. 1 2 Cohen P (2000). “The regulation of protein function by multisite phosphorylation—a 25 year update”. Trends Biochem Sci 25 (12): 596–601. PMID 11116185. doi:10.1016/S0968-0004(00)01712-6
  106. Roach P (2002). “Glycogen and its metabolism”. Curr Mol Med 2 (2): 101–20. PMID 11949930. doi:10.2174/1566524024605761
  107. Newgard C, Brady M, O'Doherty R, Saltiel A (2000). “Organizing glucose disposal: emerging roles of the glycogen targeting subunits of protein phosphatase-1” (PDF). Diabetes 49 (12): 1967–77. PMID 11117996. doi:10.2337/diabetes.49.12.1967
  108. Romano A, Conway T (1996). “Evolution of carbohydrate metabolic pathways”. Res Microbiol 147 (6–7): 448–55. PMID 9084754. doi:10.1016/0923-2508(96)83998-2
  109. Koch A (1998). “How did bacteria come to be?”. Adv Microb Physiol. Advances in Microbial Physiology 40: 353–99. ISBN 978-0-12-027740-7. PMID 9889982. doi:10.1016/S0065-2911(08)60135-6
  110. Ouzounis C, Kyrpides N (1996). “The emergence of major cellular processes in evolution”. FEBS Lett 390 (2): 119–23. PMID 8706840. doi:10.1016/0014-5793(96)00631-X
  111. Caetano-Anolles G, Kim HS, Mittenthal JE (2007). “The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture”. Proc Natl Acad Sci USA 104 (22): 9358–63. Bibcode:2007PNAS..104.9358C. PMC 1890499. PMID 17517598. doi:10.1073/pnas.0701214104
  112. Schmidt S, Sunyaev S, Bork P, Dandekar T (2003). “Metabolites: a helping hand for pathway evolution?”. Trends Biochem Sci 28 (6): 336–41. PMID 12826406. doi:10.1016/S0968-0004(03)00114-2
  113. Light S, Kraulis P (2004). “Network analysis of metabolic enzyme evolution in Escherichia coli”. BMC Bioinformatics 5: 15. PMC 394313. PMID 15113413. doi:10.1186/1471-2105-5-15.  Alves R, Chaleil R, Sternberg M (2002). “Evolution of enzymes in metabolism: a network perspective”. J Mol Biol 320 (4): 751–70. PMID 12095253. doi:10.1016/S0022-2836(02)00546-6
  114. Kim HS, Mittenthal JE, Caetano-Anolles G (2006). “MANET: tracing evolution of protein architecture in metabolic networks”. BMC Bioinformatics 7: 351. PMC 1559654. PMID 16854231. doi:10.1186/1471-2105-7-351
  115. 1 2 Teichmann SA, Rison SC, Thornton JM, Riley M, Gough J, Chothia C (2001). “Small-molecule metabolsim: an enzyme mosaic”. Trends Biotechnol 19 (12): 482–6. PMID 11711174. doi:10.1016/S0167-7799(01)01813-3
  116. Lawrence J (2005). “Common themes in the genome strategies of pathogens”. Curr Opin Genet Dev 15 (6): 584–8. PMID 16188434. doi:10.1016/j.gde.2005.09.007.  Wernegreen J (2005). “For better or worse: genomic consequences of intracellular mutualism and parasitism”. Curr Opin Genet Dev 15 (6): 572–83. PMID 16230003. doi:10.1016/j.gde.2005.09.013
  117. Pál C, Papp B, Lercher M, Csermely P, Oliver S, Hurst L (2006). “Chance and necessity in the evolution of minimal metabolic networks”. Nature 440 (7084): 667–70. Bibcode:2006Natur.440..667P. PMID 16572170. doi:10.1038/nature04568
  118. Rennie M (1999). “An introduction to the use of tracers in nutrition and metabolism”. Proc Nutr Soc 58 (4): 935–44. PMID 10817161. doi:10.1017/S002966519900124X
  119. Phair R (1997). “Development of kinetic models in the nonlinear world of molecular cell biology”. Metabolism 46 (12): 1489–95. PMID 9439549. doi:10.1016/S0026-0495(97)90154-2
  120. Sterck L, Rombauts S, Vandepoele K, Rouzé P, Van de Peer Y (2007). “How many genes are there in plants (... and why are they there)?”. Curr Opin Plant Biol 10 (2): 199–203. PMID 17289424. doi:10.1016/j.pbi.2007.01.004
  121. Borodina I, Nielsen J (2005). “From genomes to in silico cells via metabolic networks”. Curr Opin Biotechnol 16 (3): 350–5. PMID 15961036. doi:10.1016/j.copbio.2005.04.008
  122. Gianchandani E, Brautigan D, Papin J (2006). “Systems analyses characterize integrated functions of biochemical networks”. Trends Biochem Sci 31 (5): 284–91. PMID 16616498. doi:10.1016/j.tibs.2006.03.007
  123. Duarte NC, Becker SA, Jamshidi N và đồng nghiệp (tháng 2 năm 2007). “Global reconstruction of the human metabolic network based on genomic and bibliomic data”. Proc. Natl. Acad. Sci. U.S.A. 104 (6): 1777–82. Bibcode:2007PNAS..104.1777D. PMC 1794290. PMID 17267599. doi:10.1073/pnas.0610772104
  124. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL (tháng 5 năm 2007). “The human disease network”. Proc. Natl. Acad. Sci. U.S.A. 104 (21): 8685–90. Bibcode:2007PNAS..104.8685G. PMC 1885563. PMID 17502601. doi:10.1073/pnas.0701361104
  125. Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabási AL (tháng 7 năm 2008). [http:// “The implications of human metabolic network topology for disease comorbidity”]. Proc. Natl. Acad. Sci. U.S.A. 105 (29): 9880–9885. Bibcode:2008PNAS..105.9880L. PMC 2481357. PMID 18599447. doi:10.1073/pnas.0802208105
  126. Csete M, Doyle J (2004). “Bow ties, metabolism and disease”. Trends Biotechnol. 22 (9): 446–50. PMID 15331224. doi:10.1016/j.tibtech.2004.07.007
  127. Ma HW, Zeng AP (2003). “The connectivity structure, giant strong component and centrality of metabolic networks”. Bioinformatics 19 (11): 1423–30. PMID 12874056. doi:10.1093/bioinformatics/btg177.  Đã bỏ qua tham số không rõ |citeseerx= (trợ giúp)
  128. Zhao J, Yu H, Luo JH, Cao ZW, Li YX (2006). “Hierarchical modularity of nested bow-ties in metabolic networks”. BMC Bioinformatics 7: 386. PMC 1560398. PMID 16916470. doi:10.1186/1471-2105-7-386
  129. Thykaer J, Nielsen J (2003). “Metabolic engineering of beta-lactam production”. Metab Eng 5 (1): 56–69. PMID 12749845. doi:10.1016/S1096-7176(03)00003-X.  González-Pajuelo M, Meynial-Salles I, Mendes F, Andrade J, Vasconcelos I, Soucaille P (2005). “Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol”. Metab Eng 7 (5–6): 329–36. PMID 16095939. doi:10.1016/j.ymben.2005.06.001.  Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L (2003). “Metabolic engineering for microbial production of shikimic acid”. Metab Eng 5 (4): 277–83. PMID 14642355. doi:10.1016/j.ymben.2003.09.001
  130. Koffas M, Roberge C, Lee K, Stephanopoulos G (1999). “Metabolic engineering”. Annu Rev Biomed Eng 1: 535–57. PMID 11701499. doi:10.1146/annurev.bioeng.1.1.535
  131. “Metabolism”. The Online Etymology Dictionary. Truy cập ngày 20 tháng 2 năm 2007. 
  132. Leroi, Armand Marie (2014). The Lagoon: How Aristotle Invented Science. Bloomsbury. tr. 400–401. ISBN 978-1-4088-3622-4
  133. Dr. Abu Shadi Al-Roubi (1982), "Ibn Al-Nafis as a philosopher", Symposium on Ibn al-Nafis, Second International Conference on Islamic Medicine: Islamic Medical Organization, Kuwait (cf. Ibn al-Nafis As a Philosopher, Encyclopedia of Islamic World [1])
  134. Eknoyan G (1999). “Santorio Sanctorius (1561–1636) – founding father of metabolic balance studies”. Am J Nephrol 19 (2): 226–33. PMID 10213823. doi:10.1159/000013455
  135. Williams, H. S. (1904) A History of Science: in Five Volumes. Volume IV: Modern Development of the Chemical and Biological Sciences Harper and Brothers (New York) Retrieved on 26 March 2007
  136. Dubos J. (1951). “Louis Pasteur: Free Lance of Science, Gollancz. Quoted in Manchester K. L. (1995) Louis Pasteur (1822–1895)—chance and the prepared mind”. Trends Biotechnol 13 (12): 511–515. PMID 8595136. doi:10.1016/S0167-7799(00)89014-9
  137. Kinne-Saffran E, Kinne R (1999). “Vitalism and synthesis of urea. From Friedrich Wöhler to Hans A. Krebs”. Am J Nephrol 19 (2): 290–4. PMID 10213830. doi:10.1159/000013463
  138. Eduard Buchner's 1907 Nobel lecture at http://nobelprize.org Accessed 20 March 2007
  139. Kornberg H (2000). “Krebs and his trinity of cycles”. Nat Rev Mol Cell Biol 1 (3): 225–8. PMID 11252898. doi:10.1038/35043073
  140. Krebs HA, Henseleit K (1932). “Untersuchungen über die Harnstoffbildung im tierkorper”. Z. Physiol. Chem. 210: 33–66. doi:10.1515/bchm2.1932.210.1-2.33. Krebs H, Johnson W (tháng 4 năm 1937). “Metabolism of ketonic acids in animal tissues”. Biochem J 31 (4): 645–60. PMC 1266984. PMID 16746382. doi:10.1042/bj0310645

Liên quan

Tài liệu tham khảo

WikiPedia: Trao_đổi_chất http://www.britannica.com/EBchecked/topic/377325 http://www.sparknotes.com/testprep/books/sat2/biol... http://www.biomed.cas.cz/physiolres/pdf/53%20Suppl... http://bioinformatics.charite.de/supercyp/ http://orbit.dtu.dk/en/publications/from-genomes-t... http://adsabs.harvard.edu/abs/1957Natur.179..988K http://adsabs.harvard.edu/abs/1981RSPTB.293....5B http://adsabs.harvard.edu/abs/1996JMolE..43..293M http://adsabs.harvard.edu/abs/2001PNAS...98..805P http://adsabs.harvard.edu/abs/2003Sci...300..931F